On the largest prime factor of the ratio of two generalized Fibonacci numbers
Autor: | Florian Luca, Carlos Alexis Gómez Ruiz |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Journal of Number Theory. 152:182-203 |
ISSN: | 0022-314X |
DOI: | 10.1016/j.jnt.2014.11.017 |
Popis: | A generalization of the well-known Fibonacci sequence is the k-generalized Fibonacci sequence ( F n ( k ) ) n ≥ 2 − k for some integer k ≥ 2 , whose first k terms are 0 , … , 0 , 1 and each term afterwards is the sum of the preceding k terms. In this paper, we look at the prime factors of the reduced rational number F n ( k ) / F m ( l ) as max { m , n , k , l } tends to infinity. |
Databáze: | OpenAIRE |
Externí odkaz: |