On the largest prime factor of the ratio of two generalized Fibonacci numbers

Autor: Florian Luca, Carlos Alexis Gómez Ruiz
Rok vydání: 2015
Předmět:
Zdroj: Journal of Number Theory. 152:182-203
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2014.11.017
Popis: A generalization of the well-known Fibonacci sequence is the k-generalized Fibonacci sequence ( F n ( k ) ) n ≥ 2 − k for some integer k ≥ 2 , whose first k terms are 0 , … , 0 , 1 and each term afterwards is the sum of the preceding k terms. In this paper, we look at the prime factors of the reduced rational number F n ( k ) / F m ( l ) as max ⁡ { m , n , k , l } tends to infinity.
Databáze: OpenAIRE