A survey of provenance in scientific workflow
Autor: | Songhai Lin, Hong Xiao, Wenchao Jiang, Dafeng Li, Jiaben Liang, Zelin Li |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Journal of High Speed Networks. 29:129-145 |
ISSN: | 1875-8940 0926-6801 |
DOI: | 10.3233/jhs-222017 |
Popis: | The automation of data analysis in the form of scientific workflows has become a widely adopted practice in many fields of research. Data-intensive experiments using workflows enabled automation and provenance support, which contribute to alleviating the reproducibility crisis. This paper investigates the existing provenance models as well as scientific workflow applications. Furthermore, here we not only summarize the models at different levels, but also compare the applications, particularly the blockchain applied to the provenance in scientific workflows. After that, a new design of secure provenance system is proposed. Provenance that would be enabled by the emerging technology is also discussed at the end. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |