Special Pair of Dual Parametric Nonlinear Optimization Problems with Common Set of Optimal Points
Autor: | F. Nožička |
---|---|
Rok vydání: | 2002 |
Předmět: | |
Zdroj: | Optimization. 51:555-575 |
ISSN: | 1029-4945 0233-1934 |
DOI: | 10.1080/0233193021000004976 |
Popis: | On the base of a given strictly convex function defined on the Euclidean space E n ( n S 2) we can-without the assumption that it is differentiable - introduce some manifolds in topologic sense. Such manifolds are sets of all optimal points of a certain parametric non-linear optimization problem. This paper presents above all certain generalization of some results of [F. No i ) ka and L. Grygarova (1991). Some topological questions connected with strictly convex functions. Optimization , 22 , 177-191. Akademie Verlag, Berlin] and [L. Grygarova (1988). Uber Losungsmengen spezieller konvexer parametrischer Optimierungsaufgaben . Optimization 19 , 215-228. Akademie Verlag Berlin], under less strict assumptions. The main results are presented in Sections 3 and 4, in Section 3 the geometrical characterization of the set of optimal points of a certain parametric minimization problem is presented; in Section 4 we study a maximization non-linear parametric problem assigned to it. It seems that it is a certain p... |
Databáze: | OpenAIRE |
Externí odkaz: |