Small area estimation of non-monetary poverty with geospatial data
Autor: | Takaaki Masaki, David Newhouse, Ani Rudra Silwal, Adane Bedada, Ryan Engstrom |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Statistical Journal of the IAOS. 38:1035-1051 |
ISSN: | 1875-9254 1874-7655 |
DOI: | 10.3233/sji-210902 |
Popis: | This paper evaluates the benefits of combining household surveys with satellite and other geospatial data to generate small area estimates of non-monetary poverty. Using data from Tanzania and Sri Lanka and applying a household-level empirical best (EB) predictor mixed model, we find that combining survey data with geospatial data significantly improves both the precision and accuracy of our non-monetary poverty estimates. While the EB predictor model moderately underestimates standard errors of those point estimates, coverage rates are similar to standard survey-based standard errors that assume independent outcomes across clusters. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |