Small area estimation of non-monetary poverty with geospatial data

Autor: Takaaki Masaki, David Newhouse, Ani Rudra Silwal, Adane Bedada, Ryan Engstrom
Rok vydání: 2022
Předmět:
Zdroj: Statistical Journal of the IAOS. 38:1035-1051
ISSN: 1875-9254
1874-7655
DOI: 10.3233/sji-210902
Popis: This paper evaluates the benefits of combining household surveys with satellite and other geospatial data to generate small area estimates of non-monetary poverty. Using data from Tanzania and Sri Lanka and applying a household-level empirical best (EB) predictor mixed model, we find that combining survey data with geospatial data significantly improves both the precision and accuracy of our non-monetary poverty estimates. While the EB predictor model moderately underestimates standard errors of those point estimates, coverage rates are similar to standard survey-based standard errors that assume independent outcomes across clusters.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje