Moisture Content Prediction in the Switchgrass (Panicum virgatum) Drying Process Using Artificial Neural Networks
Autor: | Michael D. Montross, Javier M. Aguiar, Jaime Gomez-Gil, Víctor Martínez-Martínez, Timothy S. Stombaugh |
---|---|
Rok vydání: | 2015 |
Předmět: |
Engineering
Correlation coefficient Meteorology biology Artificial neural network business.industry General Chemical Engineering Computer Science::Neural and Evolutionary Computation Function (mathematics) biology.organism_classification Panicum virgatum Relative humidity Precipitation Physical and Theoretical Chemistry business Biological system Constant (mathematics) Water content Physics::Atmospheric and Oceanic Physics |
Zdroj: | Drying Technology. 33:1708-1719 |
ISSN: | 1532-2300 0737-3937 |
Popis: | This article proposes two artificial neural network (ANN)-based models to characterize the switchgrass drying process: The first one models processes with constant air temperature and relative humidity and the second one models processes with variable air conditions and rainfall. The two ANN-based models proposed estimated the moisture content (MC) as a function of temperature, relative humidity, previous MC, time, and precipitation information. The first ANN-based model describes MC evolution data more accurately than six mathematical empirical equations typically proposed in the literature. The second ANN-based model estimated the MC with a correlation coefficient greater than 98.8%. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |