Moisture Content Prediction in the Switchgrass (Panicum virgatum) Drying Process Using Artificial Neural Networks

Autor: Michael D. Montross, Javier M. Aguiar, Jaime Gomez-Gil, Víctor Martínez-Martínez, Timothy S. Stombaugh
Rok vydání: 2015
Předmět:
Zdroj: Drying Technology. 33:1708-1719
ISSN: 1532-2300
0737-3937
Popis: This article proposes two artificial neural network (ANN)-based models to characterize the switchgrass drying process: The first one models processes with constant air temperature and relative humidity and the second one models processes with variable air conditions and rainfall. The two ANN-based models proposed estimated the moisture content (MC) as a function of temperature, relative humidity, previous MC, time, and precipitation information. The first ANN-based model describes MC evolution data more accurately than six mathematical empirical equations typically proposed in the literature. The second ANN-based model estimated the MC with a correlation coefficient greater than 98.8%.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje