Popis: |
Um den Klimawandel zu begrenzen, müssen die CO2-Emissionen drastisch gesenkt werden [100]. Bis 2050 soll bei der Herstellung von Zement eine Einsparung um 51–60 % auf 0,425–0,350 tCO2/tZement erfolgen [7]. Um dieses Ziel zu erreichen, sind alternative Bindemittelkonzepte notwendig [70]. Diese Arbeit widmet sich alternativen, hochreaktiven Dicalciumsilicat-Bindemitteln, die durch die thermische Aktivierung von α-Dicalcium-Silicat-Hydrat (α-C2SH) erzeugt werden. Das α-C2SH ist eine kristalline C S H-Phase, die im hydrothermalen Prozess, beispielsweise aus Branntkalk und Quarz, herstellbar ist. Die thermische Aktivierung kann bei sehr niedrigen Temperaturen erfolgen (>420 °C) und führt zu einem Multiphasen-C2S-Binder. Als besonders reaktive Bestandteile können x-C2S und röntgenamorphe Anteile enthalten sein. Weiterhin können β C2S, γ C2S und Dellait (Ca6(SiO4)(Si2O7)(OH)2) entstehen. Im Rahmen der Arbeit wird zunächst der Stand des Wissens zur Polymorphie und Hydratation von C2S zusammengefasst. Es werden bekannte C2S-basierte Bindemittelkonzepte vorgestellt und bewertet. Die Herstellung von C2S-Bindern wird experimentell im Labormaßstab untersucht. Dabei kommen unterschiedliche Autoklaven und ein Muffelofen zum Einsatz. Die Herstellungsparameter werden hinsichtlich Phasenbestand und Reaktivität optimiert. Die Bindemittel werden durch quantitative Röntgen-Phasenanalyse (QXRD), Rasterelektronenmikroskopie (REM), N2-Adsorption (BET-Methode), Heliumpycnometer, Thermoanalyse (TGA/DSC) und 29Si-MAS- sowie 29Si-1H-CP/MAS-NMR-Spektroskopie charakterisiert. Das Hydratationsverhalten der Bindemittel wird vorrangig mithilfe von Wärmeflusskalorimetrie untersucht. Weiterhin werden in situ und ex situ XRD-, TGA/DSC- und REM-Untersuchungen durchgeführt. Anhand von zwei Bindemitteln wird die Fähigkeit zur Erzielung hoher Festigkeiten demonstriert. Abschließend erfolgt eine Abschätzung zu Energiebedarf und CO2-Emissionen für die Herstellung der untersuchten C2S-Binder. Die Ergebnisse zeigen, dass für eine hohe Reaktivität der Binder eine niedrige Brenntemperatur und ein geringer Wasserdampfpartialdruck während der thermischen Aktivierung entscheidend sind. Weiterhin muss das hydrothermal hergestellte α-C2SH eine möglichst hohe spezifische Oberfläche aufweisen. Diese Parameter beeinflussen den Phasenbestand und die phasenspezifische Reaktivität. Brenntemperaturen von ca. 420–500 °C führen zu hochreaktiven Bindern, die im Rahmen dieser Arbeit als Niedertemperatur-C2S-Binder bezeichnet werden. Temperaturen von ca. 600–800 °C führen zu Bindern mit geringerer Reaktivität, die im Rahmen dieser Arbeit als Hochtemperatur-C2S bezeichnet werden. Höhere Brenntemperaturen (1000 °C) führen zu Bindemitteln, die innerhalb der ersten drei Tage keine hydraulische Aktivität zeigen. Die untersuchten Bindemittel können sehr hohe Reaktionsgeschwindigkeiten erreichen. Die Wärmeflusskalorimetrie deutet bei einigen Bindemitteln einen nahezu vollständigen Umsatz innerhalb von drei Tagen an. Durch XRD wurde für einen Binder der vollständige Verbrauch von x-C2S innerhalb von drei Tagen nachgewiesen. Für einen mittels in-situ-XRD und Wärmeflusskalorimetrie untersuchten Binder wurde gezeigt, dass die Phasen vorrangig in der Reihenfolge röntgenamorph > x-C2S > β-C2S > γ-C2S hydratisieren. Hydratationsprodukte sind nadelige C S H-Phasen und Portlandit. Die Herstellung durch thermische Aktivierung von α-C2SH führt zu tafeligen Bindemittelpartikeln, die teilweise Zwickelräume und Poren zwischen den einzelnen Partikeln einschließen. Um eine verarbeitbare Bindemittelpaste zu erzeugen, sind daher sehr hohe Wasser/Bindemittel-Werte (z. B. 1,4) erforderlich. Der Wasseranspruch kann durch Mahlung etwa auf das Niveau von Zement gesenkt werden. Die Druckfestigkeitsentwicklung wurde an zwei Niedertemperatur-C2S-Kompositbindern mit 40 % Kalksteinmehl bzw. 40 % Hüttensand untersucht. Aufgrund von theoretischen Betrachtungen zur Porosität in Abhängigkeit des w/b-Wertes wurde dieser auf 0,3 festgelegt. Durch Zugabe von PCE-Fließmittel wurde ein verarbeitbarer Mörtel erhalten. Die Festigkeitsentwicklung ist sehr schnell. Der Kalksteinmehl-Binder erreichte nach zwei Tagen 46 N/mm². Bis Tag 28 trat keine weitere Festigkeitssteigerung ein. Der Hüttensand-Binder erreichte nach zwei Tagen 62 N/mm². Durch die Hüttensandreaktion stieg die Festigkeit bis auf 85 N/mm² nach 28 Tagen an. Für den Herstellungsprozess von Niedertemperatur-C2S-Binder wurden Energieverbräuche und CO2-Emissionen abgeschätzt. Es deutet sich an, dass, bezogen auf die Bindemittelmenge, keine wesentlichen Einsparungen im Vergleich zur Portlandzementherstellung möglich sind. Für die tatsächlichen Emissionen muss jedoch zusätzlich die Leistungsfähigkeit der Bindemittel berücksichtigt werden. Die Leistungsfähigkeit kann als erforderliche Bindemittelmenge betrachtet werden, die je m³ Beton eingesetzt werden muss, um bestimmte Festigkeits-, Dauerhaftigkeits- und Verarbeitungseigenschaften zu erreichen. Aus verschiedenen Veröffentlichungen [94, 201, 206] wurde die These abgeleitet, dass die Leistungsfähigkeit eines Bindemittels maßgeblich von der C-S-H-Menge bestimmt wird, die während der Hydratation gebildet wird. Daher wird für NT-C2S-Binder eine außergewöhnlich hohe Leistungsfähigkeit erwartet. Auf Basis der Leistungsfähigkeitsthese verringern sich die abgeschätzten CO2-Emissionen von NT-C2S-Bindern, sodass gegenüber Portlandzement ein mögliches Einsparpotenzial von 42 % ermittelt wurde. |