Computational predictions for predicting the performance of steel 1 panel shear wall under explosive loads

Autor: Behnam Karami, Hesam Varaee, Elham Safari Danalou, Aydin Shishegaran, Timon Rabczuk
Rok vydání: 2021
Předmět:
Zdroj: Engineering Computations. 38:3564-3589
ISSN: 0264-4401
DOI: 10.1108/ec-09-2020-0492
Popis: Purpose The resistance of steel plate shear walls (SPSW) under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the conventional weapons effect program (CONWEP) model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a multiple linear regression (MLR), multiple Ln equation regression (MLnER), gene expression programming (GEP), adaptive network-based fuzzy inference (ANFIS) and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads. Design/methodology/approach The SPSW under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the CONWEP model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a MLR, MLnER, GEP, ANFIS and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads. Findings The resistance of SPSW under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the CONWEP model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a MLR, MLnER, GEP, ANFIS and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads. Originality/value The resistance of SPSW under explosive loads is evaluated using nonlinear FE analysis and surrogate methods. This study uses the CONWEP model for the explosive load and the Johnson-Cook model for the steel plate. Based on the Taguchi method, 25 samples out of 100 samples are selected for a parametric study where we predict the damaged zones and the maximum deflection of SPSWs under explosive loads. Then, this study uses a MLR, MLnER, GEP, ANFIS and an ensemble model to predict the maximum detection of SPSWs. Several statistical parameters and error terms are used to evaluate the accuracy of the different surrogate models. The results show that the cross-section in the y-direction and the plate thickness have the most significant effects on the maximum deflection of SPSWs. The results also show that the maximum deflection is related to the scaled distance, i.e. for a value of 0.383. The ensemble model performs better than all other models for predicting the maximum deflection of SPSWs under explosive loads.
Databáze: OpenAIRE