Foreground Segmentation for Live Videos by Texture Features
Autor: | M. R Resmi, E Arun |
---|---|
Rok vydání: | 2016 |
Předmět: |
Pixel
Local binary patterns Computer science business.industry Texton Frame (networking) ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Image texture Texture filtering Computer Science::Computer Vision and Pattern Recognition Cut Computer Science::Multimedia Segmentation Computer vision Artificial intelligence business ComputingMethodologies_COMPUTERGRAPHICS |
Zdroj: | Journal of excellence in Computer Science and Engineering. 2:1-9 |
ISSN: | 2455-1937 |
DOI: | 10.18831/djcse.in/2016021001 |
Popis: | This paper presents a method to extract the foreground images from live videos by means of automatic object segmentation. The parameters such as colour, motion of the pixel and image texture or more specifically texture constraints are used for segmentation. A cellular neural network which combines both colour as well as motion of pixels which varies from frame to frame is implemented which helps in accurately separating the boundaries and thus reducing misclassifications. The global motion of pixels is calculated by computing the forward and backward displaced frame differences (DFDs) with the respect to the current frame. The texture constraint for each pixel to be labeled is calculated from the difference between their corresponding texture descriptors and the texture prior models which is provided by the Local Binary Pattern (LBP) histogram. Finally by means of the randomized texton searching algorithm and graph cut frame work the foreground is extracted from the video. |
Databáze: | OpenAIRE |
Externí odkaz: |