The Improvement of Respiratory Performance After Phototherapy-Induced EPC Mobilization in Preterm Infants With RDS

Autor: Masoud Taheri-Asl, Homa Babaei, Simin Asadian, Vahid Siavashi, Samaneh Keshavarz, Seyed Mahdi Nassiri, Mohammad Bazaei
Rok vydání: 2016
Předmět:
Zdroj: Journal of Cellular Biochemistry. 118:594-604
ISSN: 0730-2312
DOI: 10.1002/jcb.25745
Popis: Many infants who develop bronchopulmonary dysplasia (BPD) are born with serious respiratory distress syndrome (RDS), which is associated with impaired vascular and alveolar growth. RDS is a breathing disorder that mostly affects preterm infants and occurs in infants whose lungs have not yet been fully developed. The use of surfactant in RDS treatment does not necessarily prevent BPD. Endothelial progenitor cells (EPCs) may contribute to lung angiogenesis for the prevention and treatment of BPD. The aim of this study was to evaluate the therapeutic efficacy of phototherapy for EPC release in preterm infants born with RDS. Seventy-five RDS preterm infants were divided into two groups: RDS with phototherapy and RDS without phototherapy. Respiratory indices were recorded for each patient. Circulating EPCs were isolated before and after phototherapy and colony forming efficiency, chemotactic, tubulogenic, proliferative, and functional properties of these cells were analyzed. Our results showed that phototherapy increased the release of EPCs into the circulation in RDS preterm infants, with augmentation of cell proliferation, tubulogenic, chemotactic, and proliferative properties of EPCs. Phototherapy-induced EPC release was associated with improved lung function as was recorded by significantly decrease in continuous positive airway pressure (CPAP) days, CPAP plus ventilator days, and PCO2 along with a significant increase in PO2 and PaO2 /FiO2 , resulting in markedly decreased rate of BPD occurrence in preterm infants with RDS. Overall, phototherapy is touted as a promising modality for the amelioration of respiratory performance and prohibition of BPD occurrence in RDS preterm infants. J. Cell. Biochem. 118: 594-604, 2017. © 2016 Wiley Periodicals, Inc.
Databáze: OpenAIRE