Popis: |
This paper presents a comprehensive set of test cases for the verification and validation (V & V) of the Stanford University Unstructured (SU) software suite within the context of compressible, turbulent flows described by the Reynolds-averaged Navier-Stokes (RANS) equations. SU is an open-source (Lesser General Public License, version 2.1), integrated analysis and design tool for solving multi-disciplinary problems governed by partial differential equations (PDEs) on general, unstructured meshes. As such, SU is able to handle arbitrarily complex geometries, mesh adaptation, and a variety of physical problems. At its core, the software suite is a collection of C++ modules embedded within a Python framework that are built specifically for both PDE analysis and PDE-constrained optimization, including surface gradient computations using the continuous adjoint technique. V & V studies of twoand three-dimensional problems are presented for turbulent flows across a wide range of Mach numbers (from subsonic flat plate studies to a complex, transonic aircraft configuration). The presentation of this comprehensive V & V of SU is intended to be the main contribution of this paper: the results generated with SU in a variety of standard test cases compare well with experimental data and established flow solvers that have undergone similar V & V efforts. For completeness, the adjoint-based shape design capability within SU is also illustrated. |