Representability of Cauchy-type integrals of finite complex measures on the real axis in terms of their boundary values
Autor: | Rashid A. Aliev |
---|---|
Rok vydání: | 2016 |
Předmět: |
Numerical Analysis
Applied Mathematics 010102 general mathematics Residue theorem Mathematical analysis Mathematics::Analysis of PDEs Darboux integral 01 natural sciences Methods of contour integration Order of integration (calculus) Computational Mathematics Square-integrable function 0103 physical sciences Cauchy principal value 010307 mathematical physics 0101 mathematics Cauchy's integral theorem Analysis Cauchy's integral formula Mathematics |
Zdroj: | Complex Variables and Elliptic Equations. 62:536-553 |
ISSN: | 1747-6941 1747-6933 |
DOI: | 10.1080/17476933.2016.1227977 |
Popis: | In the present paper, we introduce the notions of - and -integrals of function, measurable on the real axis R and prove that the Cauchy-type integrals of a finite complex Borel measures on the upper and lower half-plane are Cauchy - and -integrals, respectively. |
Databáze: | OpenAIRE |
Externí odkaz: |