Conserved quantities ofSU(2)-invariant interactions for correlated fermions and the advantages for quantum Monte Carlo simulations
Autor: | Giorgio Sangiovanni, Karsten Held, Alessandro Toschi, Nicolaus Parragh |
---|---|
Rok vydání: | 2012 |
Předmět: |
Physics
Quantum Monte Carlo 02 engineering and technology 021001 nanoscience & nanotechnology Condensed Matter Physics Quantum number 01 natural sciences Conserved quantity Electronic Optical and Magnetic Materials Mott transition symbols.namesake Atomic orbital Quantum mechanics 0103 physical sciences symbols Strongly correlated material Statistical physics Invariant (mathematics) 010306 general physics 0210 nano-technology Hamiltonian (quantum mechanics) |
Zdroj: | Physical Review B. 86 |
ISSN: | 1550-235X 1098-0121 |
DOI: | 10.1103/physrevb.86.155158 |
Popis: | In the context of realistic calculations for strongly correlated materials with $d$ or $f$ electrons the efficient computation of multi-orbital models is of paramount importance. Here we introduce a set of invariants for the $SU(2)$-symmetric Kanamori Hamiltonian, which allows us to massively speed up the calculation of the fermionic trace in hybridization-expansion continuous-time quantum Monte Carlo algorithms. We show that by exploiting this set of good quantum numbers the study of the orbital-selective Mott transition in systems with up to seven correlated orbitals becomes feasible. |
Databáze: | OpenAIRE |
Externí odkaz: |