Autor: |
Amel Hind Hassein-Bey, Abd-Elmouneïm Belhadj, Selma Toumi, Hichem Tahraoui, Mohammed Kebir, Abdeltif Amrane, Chebli Derradji, Abdallah Bouguettoucha, Jie Zhang, Lotfi Mouni |
Rok vydání: |
2023 |
DOI: |
10.20944/preprints202305.0296.v1 |
Popis: |
The global context of research for new sustainable energy storage technologies makes it a very active sector with significant scientific and economic challenges. Indeed, due to the irregular development of renewable energies and the shutdown of traditional power facilities, it is difficult to maintain a stable balance in terms of supply and demand: energy storage can help in particular for substantial changes in the latter. Metal air batteries have a higher energy density and are safer than other available energy storage devices. Based on the existing and proven lead-acid battery technology, this paper proposed an open cell foam manufactured by the Excess Salt Replication process for use as an anode for lead-air battery cellsies with sulphuric acid as the electrolyte. This will save lead and reduce the battery weight. A 25% antimonial lead alloy was used to produce open cell foams with a cell diameter between 2 mm and 5 mm for the antimonial lead-air battery. Preliminary results of the effective electrical conductivity of self-discharged primary battery cells, measured experimentally, showed that all antimonial lead foam-air battery cellsies performed better than that made from the same dense non porous antimonial lead alloy. This is generally due to their important specific surface area where oxidation-reduction reactions took place. A correlation between the effective electrical conductivity and the cell diameter has been established and the highest conductivity was obtained with a cell diameter of 5mm. The feasibility of such an electrical system has been demonstrated. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|