On Seymour’s Second Neighborhood conjecture of m-free digraphs
Autor: | Jun-Ming Xu, Hao Liang |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Vertex (graph theory) Conjecture 010102 general mathematics Digraph 0102 computer and information sciences 01 natural sciences Theoretical Computer Science Directed cycle Combinatorics Computer Science::Discrete Mathematics 010201 computation theory & mathematics Discrete Mathematics and Combinatorics 0101 mathematics Real number Mathematics |
Zdroj: | Discrete Mathematics. 340:1944-1949 |
ISSN: | 0012-365X |
DOI: | 10.1016/j.disc.2017.04.003 |
Popis: | This paper gives an approximate result related to Seymour’s Second Neighborhood conjecture, that is, for any m -free digraph G , there exists a vertex v ∈ V ( G ) and a real number λ m such that d + + ( v ) ≥ λ m d + ( v ) , and λ m → 1 while m → + ∞ . This result generalizes and improves some known results in a sense. |
Databáze: | OpenAIRE |
Externí odkaz: |