Wafer-scale aluminum plasmonics for fluorescence based biodetection

Autor: Ted Wangensteen, James M. Fraser, Matthew C. George, Arash Farhang, Kent Prestgard, Brent Williamson, Mike Black, Rumyana Petrova
Rok vydání: 2015
Předmět:
Zdroj: SPIE Proceedings.
ISSN: 0277-786X
DOI: 10.1117/12.2186871
Popis: Moxtek has leveraged existing capabilities in wafer-scale patterning of sub-wavelength wire grid polarizers into the fabrication of 1D and 2D periodic aluminum plasmonic structures. This work will discuss progress in 200 mm diameter wafer-scale fabrication, with detailed emphasis within the realm of microarray based fluorescence detection. Aluminum nanohole arrays in a hexagonal lattice are first numerically investigated. The nanohole array geometry and periodicity are specifically tuned to coincide both with the excitation of the fluorophore Cy3, and to provide a high field enhancement within the nanoholes where labeled biomolecules are captured. This is accomplished through numerical modelling, nanofabrication, SEM imaging, and optical characterization. A 200mm diameter wafer, patterned with the optically optimized nanohole array, is cut into standard 1x3 inch microscope slide pieces and then subsequently printed with various antigens at 9 different concentrations. A sandwich bioassay is then carried out, using the corresponding conjugate antibodies in order to demonstrate specificity. The nanohole array exhibit a 3-4 times total fluorescence enhancement of Cy3, when compared to a leading commercial microarray glass slide.
Databáze: OpenAIRE