Popis: |
>The corrosion resistance of mantensitic and ferritic austenitic stainless steels and carbon steels in pressurized water at 500 to 600 deg F is compared. Included are specific out-of-pile data for austenitic stainless steels, AISI types types 410, 420, 431, and 440C; the ferritic AISI types 430, 442, and 446; the precipitation-hardening type 17-4PH; and carbon steels, ASTM 212 A and B. Available corrosion results obtained under irradiation at exposures in the range of 7 x 10/sup 16/ to 3 x 10/sup 19/ nvt are also included for types 304, types of martensitic and ferritic stainless steels which were evaluated do not contain nickel. For application where it is desirable to minimize Co/sup 58/ activity produced from nickel, selection of a martensitic or ferritic stainless steel may be more appropriate than choosing the more popular nickel-bearing austenitic stainless steel or a fuel-element cladding material. Interpretation of the data indicates that, on the average, martensitic and ferritic stainless steels corrode more rapidly than austenitic alloys but more slowly than carbon and low-alloy steels. Under selected controlled water conditions or under irradiation, the corrosion of the nickel-free stainless steels appears to differ little from the austenitics. The corrosion of martensitic and ferritic stainlessmore » steels in pressurized-water systems therefore does not appear of such magnitude as to rule out development of these materials as the cladding fuel elements for specific applications. (auth)« less |