Stability of a Timoshenko System with Localized Kelvin–Voigt Dissipation
Autor: | Jaime E. Muñoz Rivera, Gabriel Aguilera Contreras |
---|---|
Rok vydání: | 2021 |
Předmět: |
Timoshenko beam theory
0209 industrial biotechnology Control and Optimization Component (thermodynamics) Applied Mathematics 010102 general mathematics Constitutive equation Mathematical analysis 02 engineering and technology Dissipation 01 natural sciences Viscosity 020901 industrial engineering & automation Exponential stability Position (vector) 0101 mathematics Beam (structure) Mathematics |
Zdroj: | Applied Mathematics & Optimization. 84:3547-3563 |
ISSN: | 1432-0606 0095-4616 |
Popis: | We consider the Timoshenko beam with localized Kelvin–Voigt dissipation distributed over two components: one of them with constitutive law of the type $$C^1$$ , and the other with discontinuous law. The third component is simply elastic, where the viscosity is not effective. Our main result is that the decay depends on the position of the components. We will show that the system is exponentially stable if and only if the component with discontinuous constitutive law is not in the center of the beam. When the discontinuous component is in the middle, the solution decays polynomially. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |