Two-Electron Redox Tuning of Cyclopentadienyl Cobalt Complexes Enabled by the Phenylenediamide Ligand

Autor: Minzhu Zou, Thomas J. Emge, Kate M. Waldie
Rok vydání: 2023
DOI: 10.26434/chemrxiv-2023-l58hm
Popis: A family of neutral cobalt complexes, [CpR'Co(Ropda)] 1-5, based on the redox-active o-phenylenediamide ligand (Ropda) undergo reversible 2e- oxidation revealed by cyclic voltammetry. This multielectron behavior is observed for all complexes regardless of the substituents on the phenylenediamide ligand, enabling redox tuning over more than 0.5 V. These diamagnetic neutral complexes are best described as delocalized systems with covalent bonding across the cobalt-opda metallocycle, consistent with the closed-shell singlet ground-state predicted by density functional theory (DFT) calculations. Two-electron oxidation using chemical oxidants affords the dicationic species, which are formulated as Co(III)-benzoquinonediimine systems with an additional coordinated acetonitrile ligand. DFT calculations also predict an ECE pathway for the 2e- oxidation, in which the first 1e- step is primarily a ligand-based process with redistribution of electron density to the metal. The associated distortion of the coordination geometry and disruption of the metallocycle bonding enable acetonitrile coordination in the intermediate oxidation state, which is critical for favoring the second electron transfer and accessing the potential inversion.
Databáze: OpenAIRE