On the connections between Pell numbers and Fibonacci p-numbers
Autor: | Anthony G. Shannon, Ömür Deveci, Özgür Erdağ |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Notes on Number Theory and Discrete Mathematics. 27:148-160 |
ISSN: | 2367-8275 1310-5132 |
DOI: | 10.7546/nntdm.2021.27.1.148-160 |
Popis: | In this paper, we define the Fibonacci–Pell p-sequence and then we discuss the connection of the Fibonacci–Pell p-sequence with the Pell and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci–Pell p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci–Pell p-sequence. Furthermore, we derive relationships between the Fibonacci–Pell p-numbers and their permanent, determinant and sums of certain matrices. |
Databáze: | OpenAIRE |
Externí odkaz: |