Popis: |
Allanite-group minerals are known to incorporate not only U and Th but also initial, non-radiogenic Pb. Allanite can therefore be analyzed in order to assess its crystallization age as well as the ambient Pb composition at the time of crystallization. Whereas allanite age dating has been the focus of many studies, constraining its initial Pb composition has received much less attention. We collected a series of Phanerozoic, allanite-bearing magmatic rock samples (volcanic, plutonic, pegmatite) and measured both the age and initial Pb composition of allanite by laser ablation-multi collector-inductively coupled plasma-mass spectrometry. We show that allanite data can be corrected for mass bias and fractionation using zircon (for U/Pb and Th/Pb ratios) and glass (for Pb/Pb ratios) as reference material as long as allanite is not metamict. A lower intercept age and y-axis intercept Pb composition can be determined by linearly regressing U-Pb data in a Tera-Wasserburg diagram, and a 230Th disequilibrium correction is highly recommended. We find a good agreement between our allanite U-Pb dates and published U-Pb zircon ages for the same localities. Our initial Pb compositions are validated by a fair agreement with Pb isotopic data measured on co-genetic feldspars from the same samples. The initial Pb composition of samples ranging from ca. 530 to 18 Ma reveals fluctuations in initial 207Pb/206Pb ratio, which points to different degrees of crustal (elevated μ=238U/204Pb) contribution. These variations could be due to post-magmatic deformation, weathering or metamorphism, but we believe that they rather reflect differences in initial magma composition. We thus emphasize the usefulness of allanite initial Pb compositions to discuss the source of igneous rocks. |