Autor: | James E. Weiel, Walter S. Dallas, Emily A. Hull-Ryde, Mary E. Lancaster, James M. Lenhard, Richard G. Buckholz, Mark A. Paulik |
---|---|
Rok vydání: | 1998 |
Předmět: |
Pharmacology
medicine.medical_specialty Organic Chemistry Pharmaceutical Science Troglitazone Rotenone Cycloheximide Biology chemistry.chemical_compound Endocrinology chemistry Cell culture Adipocyte Internal medicine medicine Molecular Medicine Lipolysis Uncoupling protein Pharmacology (medical) Thermogenesis Biotechnology medicine.drug |
Zdroj: | Pharmaceutical Research. 15:944-949 |
ISSN: | 0724-8741 |
DOI: | 10.1023/a:1011993019385 |
Popis: | Purpose. Although the effects of thermogenic agents in cell culture can be measured by direct microcalorimetry, only a few samples can be analyzed over several hours. In this report, we describe a robust non-invasive technique to measure real-time thermogenesis of cells cultured in microtiter plates using infrared thermography. Methods. Yeast were transformed with uncoupling protein-2 (UCP2) or exposed to carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) or rotenone. Adipocytes were exposed to rotenone, FCCP, cycloheximide, troglitazone, or CL316243. Thermogenesis was measured using infrared thermography. Results. Thermogenesis increased after exposing yeast to the mitochondrial uncoupler, FCCP, or transforming the cells with UCP2. Further, thermogenesis in adipocytes was stimulated by CL316243, a β3-adrenoceptor agonist being developed to treat obesity. The protein synthesis inhibitor, cycloheximide, did not inhibit CL316243-mediated thermogenesis. In contrast, the mitochondrial proton transport inhibitor, rotenone, inhibited thermogenesis in yeast and adipocytes. Similarly, the antidiabetic agent, troglitazone, suppressed thermogenesis in adipocytes. Although increased UCP synthesis resulted in increased thermogenesis in yeast, UCP expression did not correlate with thermogenesis in adipocytes. Conclusions. The results, taken together with the high resolution (0.002°C) and robustness (384-well format) of the approach, indicate infrared-imaging is a rapid and effective method for measuring thermogenesis in vitro. |
Databáze: | OpenAIRE |
Externí odkaz: |