Supersymmetry and Kac-Moody algebras
Autor: | F. Langouche, T. Schücker |
---|---|
Rok vydání: | 1986 |
Předmět: |
Pure mathematics
Current algebra Statistical and Nonlinear Physics Universal enveloping algebra Super-Poincaré algebra Lie conformal algebra Algebra Filtered algebra High Energy Physics::Theory Mathematics::Quantum Algebra Algebra representation Cellular algebra Mathematics::Representation Theory Mathematical Physics Mathematics Supersymmetry algebra |
Zdroj: | Letters in Mathematical Physics. 11:275-282 |
ISSN: | 1573-0530 0377-9017 |
DOI: | 10.1007/bf00400226 |
Popis: | The invariance algebra of the Majorana action contains a Kac-Moody algebra which, ‘on shell’, reduces to an Abelian algebra. In the absence of auxiliary fields in the Wess-Zumino model, supersymmetry transformations generate an infinite-dimensional Lie algebra, which is shown to be a Grassmannian extension of this Kac-Moody algebra. The corresponding Noether charges are discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |