Semigroup rings as weakly factorial domains, II
Autor: | Gyu Whan Chang, Dong Yeol Oh |
---|---|
Rok vydání: | 2019 |
Předmět: |
Monoid
Ring (mathematics) Factorial Pure mathematics Semigroup Computer Science::Information Retrieval General Mathematics 010102 general mathematics Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) 010103 numerical & computational mathematics 01 natural sciences Integral domain TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ComputingMethodologies_DOCUMENTANDTEXTPROCESSING Computer Science::General Literature 0101 mathematics Quotient group Commutative property ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | International Journal of Algebra and Computation. 29:407-418 |
ISSN: | 1793-6500 0218-1967 |
DOI: | 10.1142/s0218196719500085 |
Popis: | Let [Formula: see text] be an integral domain, [Formula: see text] be a nonzero torsionless commutative cancellative monoid with quotient group [Formula: see text], and [Formula: see text] be the semigroup ring of [Formula: see text] over [Formula: see text]. In this paper, among other things, we show that if [Formula: see text] (respectively, [Formula: see text], then [Formula: see text] is a weakly factorial domain if and only if [Formula: see text] is a weakly factorial GCD-domain, [Formula: see text] is a weakly factorial GCD-semigroup, and [Formula: see text] is of type [Formula: see text] (respectively, [Formula: see text] except [Formula: see text]). |
Databáze: | OpenAIRE |
Externí odkaz: |