Semigroup rings as weakly factorial domains, II

Autor: Gyu Whan Chang, Dong Yeol Oh
Rok vydání: 2019
Předmět:
Zdroj: International Journal of Algebra and Computation. 29:407-418
ISSN: 1793-6500
0218-1967
DOI: 10.1142/s0218196719500085
Popis: Let [Formula: see text] be an integral domain, [Formula: see text] be a nonzero torsionless commutative cancellative monoid with quotient group [Formula: see text], and [Formula: see text] be the semigroup ring of [Formula: see text] over [Formula: see text]. In this paper, among other things, we show that if [Formula: see text] (respectively, [Formula: see text], then [Formula: see text] is a weakly factorial domain if and only if [Formula: see text] is a weakly factorial GCD-domain, [Formula: see text] is a weakly factorial GCD-semigroup, and [Formula: see text] is of type [Formula: see text] (respectively, [Formula: see text] except [Formula: see text]).
Databáze: OpenAIRE