On finite groups with exactly one vanishing conjugacy class size
Autor: | Neda Ahanjideh |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Proceedings of the Royal Society of Edinburgh: Section A Mathematics. 153:344-368 |
ISSN: | 1473-7124 0308-2105 |
DOI: | 10.1017/prm.2022.4 |
Popis: | Let $G$ be a finite group. An element $g \in G$ is called a vanishing element in $G$ if there exists an irreducible character $\chi$ of $G$ such that $\chi (g)=0$. The size of a conjugacy class of $G$ containing a vanishing element is called a vanishing conjugacy class size of $G$. In this paper, we give an affirmative answer to the problem raised by Bianchi, Camina, Lewis and Pacifici about the solvability of finite groups with exactly one vanishing conjugacy class size. |
Databáze: | OpenAIRE |
Externí odkaz: |