On positivity of spectral shift functions
Autor: | Anna Skripka |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Linear Algebra and its Applications. 523:118-130 |
ISSN: | 0024-3795 |
DOI: | 10.1016/j.laa.2017.02.026 |
Popis: | We show that every spectral shift function of an even order η 2 k is nonnegative outside the convex hull of the spectrum of an initial operator cvh σ ( H ) ; every spectral shift function of an odd order η 2 k − 1 is nonnegative (respectively, nonpositive) outside cvh σ ( H ) whenever a perturbation is nonnegative (respectively, nonpositive). We also derive several sufficient conditions for positivity of η 2 k and η 2 k − 1 on the whole real line. |
Databáze: | OpenAIRE |
Externí odkaz: |