A MODEL OF QUANTUM OSCILLATOR WITH DISCRETE SPACE
Autor: | Ivan I. Kachuryk, A. U. Klimyk |
---|---|
Rok vydání: | 2008 |
Předmět: |
Physics
Nuclear and High Energy Physics General Physics and Astronomy Creation and annihilation operators Astronomy and Astrophysics Operator theory Second quantization Optical phase space Quantum harmonic oscillator Quantum mechanics Coherent states in mathematical physics Coherent states Squeezed coherent state Mathematical physics |
Zdroj: | Modern Physics Letters A. 23:943-952 |
ISSN: | 1793-6632 0217-7323 |
DOI: | 10.1142/s0217732308026832 |
Popis: | We construct a new model of the quantum oscillator, which is related to the discrete q-Hermite polynomials of the second type. The position and momentum operators in the model are appropriate operators of the Fock representation of a deformation of the Heisenberg algebra. These operators have a discrete non-degenerate spectra. These spectra are spread over the whole real line. Coordinate and momentum realizations of the model are constructed. Coherent states are explicitly given. |
Databáze: | OpenAIRE |
Externí odkaz: |