A novel approach for ISL alphabet recognition using Extreme Learning Machine

Autor: Ravinder Kumar, Anand Kumar
Rok vydání: 2020
Předmět:
Zdroj: International Journal of Information Technology. 13:349-357
ISSN: 2511-2112
2511-2104
DOI: 10.1007/s41870-020-00525-6
Popis: Deaf and dumb people use sign language as a tool for communication. As per the 2011 census in India, hearing impaired and speech disabled population is 1,998,692 and 5,072,914 respectively (Disabled persons in India, https://www.mospi.gov.in ). Normal hearing people do not learn sign language and thus there is a big communication gap between them and deaf and dumb people. Sign language interpreters can fill this gap but it is a very costly affair to hire them. Indian Sign Language (ISL) consists of signs which are made with two hands while other sign languages like American Sign Language consists of signs made with single hand. This work proposes an automatic and efficient computer vision based system to recognize ISL alphabet which can assist this communication. It can further be used as a module of complete ISL recognition system. Phases in ISL alphabet recognition are image acquisition, preprocessing, segmentation, feature extraction and classification. All 26 ISL alphabet have been considered for testing with average accuracy of 80.76%. Results show that the accuracy of 100% is achieved when similar alphabet {C, L, M, N, R, U,Y} are excluded from testing dataset.
Databáze: OpenAIRE