Derivatives of the Lie structure operator on a real hypersurface in complex projective space

Autor: Juan de Dios Pérez, David Pérez-López
Rok vydání: 2021
Předmět:
Zdroj: Monatshefte für Mathematik. 196:281-303
ISSN: 1436-5081
0026-9255
DOI: 10.1007/s00605-021-01586-w
Popis: If we consider a real hypersurface M in a complex projective space we have the covariant derivatives associated to both the Levi-Civita connection and, for any nonnull real number k, to the k-th generalized Tanaka-Webster connection. We also have the Lie derivative and a derivative of Lie type associated to the k-th generalized Tanaka-Webster connection. If we consider the structure Lie operator $$L_{\xi }$$ on M, we can define two tensor fields of type (1,2) on M from $$L_{\xi }$$ associated to the derivatives mentioned above, $$L_{{\xi }_F}^{(k)}$$ and $$L_{{\xi }_T}^{(k)}$$ . Kaimakamis, Panagiotidou and Perez obtained the classifications of real hypersurfaces for which either $$L_{{\xi }_F}^{(k)}$$ or $$L_{{\xi }_T}^{(k)}$$ identically vanish. We generalize such results classifying real hypersurfaces in complex projective space such that $$L_{{\xi }_F}^{(k)}$$ (respectively, $$L_{{\xi }_T}^{(k)}$$ ) is either symmetric or skew symmetric.
Databáze: OpenAIRE