Spectral deformations and exponential decay of eigenfunctions for the Neumann Laplacian on manifolds with quasicylindrical ends

Autor: Victor Kalvin
Rok vydání: 2015
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 432:749-760
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.07.008
Popis: We study spectral properties of the Neumann Laplacian on manifolds with quasicylindrical ends. In particular, we prove exponential decay of the non-threshold eigenfunctions and show that the eigenvalues can accumulate only at thresholds of the absolutely continuous spectrum and only from below. The non-threshold eigenvalues are also discrete eigenvalues of a non-selfadjoint operator.
Databáze: OpenAIRE