Spectral deformations and exponential decay of eigenfunctions for the Neumann Laplacian on manifolds with quasicylindrical ends
Autor: | Victor Kalvin |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Journal of Mathematical Analysis and Applications. 432:749-760 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2015.07.008 |
Popis: | We study spectral properties of the Neumann Laplacian on manifolds with quasicylindrical ends. In particular, we prove exponential decay of the non-threshold eigenfunctions and show that the eigenvalues can accumulate only at thresholds of the absolutely continuous spectrum and only from below. The non-threshold eigenvalues are also discrete eigenvalues of a non-selfadjoint operator. |
Databáze: | OpenAIRE |
Externí odkaz: |