Popis: |
Directing plant growth in weightlessness requires understanding the processes that establish plant orientation and how to manipulate them. Both gravi- and phototropism determine directional growth and previous experiments showed that high gradient magnetic fields (HGMF) can induce curvature in roots and shoots. Experiments with Brassica rapa verified that that gravitropism-like induction of curvature is possible in space and that the HGMF-responsive organelles are amyloplasts. We assessed the effect of space and HGMF based on 16 genes and compared their transcription with static growth and clinorotation. Amyloplasts size in root tips increased under weightlessness but decreased under clinorotation but not in response to magnetic fields. Amyloplast size changes were correlated with reduced amylase transcription in space samples and enhanced transcription after clinorotation. Mechanostimulation and weightlessness have opposite effects on the size of amyloplasts. The data show that plants perceive weightlessness, and that their metabolism adjusts to microgravity and mechanostimulation. Thus, clinorotation as surrogate for space research may lead to incorrect interpretations. |