Limitations of Poole–Frenkel Conduction in Bilayer $\hbox{HfO}_{2}/\hbox{SiO}_{2}$ MOS Devices
Autor: | Ross Butler, Richard G. Southwick, Christopher Buu, Gennadi Bersuker, William B. Knowlton, Justin Reed |
---|---|
Rok vydání: | 2010 |
Předmět: |
Materials science
Condensed matter physics business.industry Transistor Electrical engineering Dielectric Atmospheric temperature range Thermal conduction Capacitance Poole–Frenkel effect Electronic Optical and Magnetic Materials law.invention law MOSFET Electrical and Electronic Engineering Safety Risk Reliability and Quality business High-κ dielectric |
Zdroj: | IEEE Transactions on Device and Materials Reliability. 10:201-207 |
ISSN: | 1558-2574 1530-4388 |
DOI: | 10.1109/tdmr.2009.2039215 |
Popis: | The gate leakage current of metal-oxide-semiconductors (MOSs) composed of hafnium oxide (HfO2) exhibits temperature dependence, which is usually attributed to the standard Poole-Frenkel (P-F) transport model. However, the reported magnitudes of the trap barrier height vary significantly. This paper explores the fundamental challenges associated with applying the P-F model to describe transport in HfO2/ SiO2 bilayers in n/p MOS field-effect transistors composed of 3- and 5-nm HfO2 on 1.1-nm SiO2 dielectric stacks. The extracted P-F trap barrier height is shown to be dependent on several variables including the following: the temperature range, method of calculating the electric field, electric-field range considered, and HfO2 thickness. P-F conduction provides a consistent description of the gate leakage current only within a limited range of the current values while failing to explain the temperature dependence of the 3-nm HfO2 stacks for gate voltages of less than 1 V, leaving other possible temperature-dependent mechanisms to be explored. |
Databáze: | OpenAIRE |
Externí odkaz: |