On the Approximation Ratio of the Path Matching Christofides Algorithm

Autor: Sacha Krug
Rok vydání: 2012
Předmět:
Zdroj: SOFSEM 2012: Theory and Practice of Computer Science ISBN: 9783642276590
SOFSEM
DOI: 10.1007/978-3-642-27660-6_29
Popis: The traveling salesman problem (TSP) is one of the most fundamental optimization problems. We consider the β -metric traveling salesman problem (Δβ -TSP), i.e., the TSP restricted to graphs satisfying the β -triangle inequality c ({v ,w })≤β (c ({v ,u })+c (u ,w })), for some cost function c and any three vertices u ,v ,w . The well-known path matching Christofides algorithm (PMCA) guarantees an approximation ratio of $\frac{3}{2}\beta^2$ and is the best known algorithm for the Δβ -TSP, for 1≤β ≤2. We provide a complete analysis of the algorithm. First, we correct an error in the original implementation that may produce an invalid solution. Using a worst-case example, we then show that the algorithm cannot guarantee a better approximation ratio. The example can be reused for the PMCA variants for the Hamiltonian path problem with zero and one prespecified endpoints. For two prespecified endpoints, we cannot reuse the example, but we construct another worst-case example to show the optimality of the analysis also in this case.
Databáze: OpenAIRE