AKAP79/150 recruits the transcription factor NFAT to regulate signaling to the nucleus by neuronal L-type Ca2+channels
Autor: | Mark L. Dell'Acqua, Jonathan G. Murphy, William A. Sather, Kevin C. Crosby, Philip J. Dittmer |
---|---|
Rok vydání: | 2019 |
Předmět: |
0303 health sciences
Voltage-dependent calcium channel Fluorescence recovery after photobleaching NFAT Cell Biology Biology Cell biology Dephosphorylation 03 medical and health sciences 0302 clinical medicine Transcription (biology) Signal transduction Molecular Biology Transcription factor 030217 neurology & neurosurgery 030304 developmental biology Calcium signaling |
Zdroj: | Molecular Biology of the Cell. 30:1743-1756 |
ISSN: | 1939-4586 1059-1524 |
DOI: | 10.1091/mbc.e19-01-0060 |
Popis: | In neurons, regulation of activity-dependent transcription by the nuclear factor of activated T-cells (NFAT) depends upon Ca2+influx through voltage-gated L-type calcium channels (LTCC) and NFAT translocation to the nucleus following its dephosphorylation by the Ca2+-dependent phosphatase calcineurin (CaN). CaN is recruited to the channel by A-kinase anchoring protein (AKAP) 79/150, which binds to the LTCC C-terminus via a modified leucine-zipper (LZ) interaction. Here we sought to gain new insights into how LTCCs and signaling to NFAT are regulated by this LZ interaction. RNA interference–mediated knockdown of endogenous AKAP150 and replacement with human AKAP79 lacking its C-terminal LZ domain resulted in loss of depolarization-stimulated NFAT signaling in rat hippocampal neurons. However, the LZ mutation had little impact on the AKAP–LTCC interaction or LTCC function, as measured by Förster resonance energy transfer, Ca2+imaging, and electrophysiological recordings. AKAP79 and NFAT coimmunoprecipitated when coexpressed in heterologous cells, and the LZ mutation disrupted this association. Critically, measurements of NFAT mobility in neurons employing fluorescence recovery after photobleaching and fluorescence correlation spectroscopy provided further evidence for an AKAP79 LZ interaction with NFAT. These findings suggest that the AKAP79/150 LZ motif functions to recruit NFAT to the LTCC signaling complex to promote its activation by AKAP-anchored calcineurin. |
Databáze: | OpenAIRE |
Externí odkaz: |