Semigroup and Riesz transform for the Dunkl- Schr��dinger operators

Autor: Amri, B��chir, Hammi, Amel
Rok vydání: 2019
Předmět:
DOI: 10.48550/arxiv.1910.06245
Popis: Let $L_k=-��_k+V$ be the Dunk- Schr��dinger operators, where $��_k=\sum_{j=1}^dT_j^2$ is the Dunkl Laplace operator associated to the dunkl operators $T_j$ on $\mathbb{R}^d$ and $V$ is a nonnegative potential function. In the first part of this paper we introduce the Riesz transform $R_j= T_j L_k^{-1/2}$ as an $L^2$- bounded operator and we prove that is of weak type $(1,1)$ and then is bounded on $L^p(\mathbb{R}^d,d��_k(x))$ for $1
Databáze: OpenAIRE