Semigroup and Riesz transform for the Dunkl- Schr��dinger operators
Autor: | Amri, B��chir, Hammi, Amel |
---|---|
Rok vydání: | 2019 |
Předmět: | |
DOI: | 10.48550/arxiv.1910.06245 |
Popis: | Let $L_k=-��_k+V$ be the Dunk- Schr��dinger operators, where $��_k=\sum_{j=1}^dT_j^2$ is the Dunkl Laplace operator associated to the dunkl operators $T_j$ on $\mathbb{R}^d$ and $V$ is a nonnegative potential function. In the first part of this paper we introduce the Riesz transform $R_j= T_j L_k^{-1/2}$ as an $L^2$- bounded operator and we prove that is of weak type $(1,1)$ and then is bounded on $L^p(\mathbb{R}^d,d��_k(x))$ for $1 |
Databáze: | OpenAIRE |
Externí odkaz: |