Popis: |
Next generation memory technologies, which we denote as 'new memory', have both non-volatile and byte addressable properties. These characteristics are expected to bring changes to the conventional computer system structure. In this paper, we propose a fast boot technique for hybrid main memory architectures that have both new memory and DRAM. The key technique used for fast booting is write-tracking. Write-tracking is used to detect and manage modified data detection and involves setting the kernel region to read-only. This setting is used to trigger intentional faults upon modification requests. As the fault handler can detect the faulting address, write-tracking makes use of the address to manage the modified data. In particular, in our case, we make use of the MMU (Memory Management Unit) translation table. When a write occurs to the boot completed state, write-tracking preserves the original state of the modified address of the kernel region to a particular location, and execution continues. Upon booting, the fast booting process restores the preserved data to the original kernel region allowing rapid system boot-up. We develop the fast booting technique in an actual embedded board equipped with new memory. The boot time is reduced to less than half a second compared to around 15 seconds that is required for the original system. |