Primary and secondary room temperature molten salt electrochemical cells
Autor: | G. F. Reynolds, C.J. Dymek |
---|---|
Rok vydání: | 1985 |
Předmět: |
Ion exchange
Renewable Energy Sustainability and the Environment Chemistry Analytical chemistry Energy Engineering and Power Technology Halide Electrolyte Mole fraction Cathode law.invention Anode chemistry.chemical_compound law Bromide Electrical and Electronic Engineering Physical and Theoretical Chemistry Molten salt |
Zdroj: | Journal of Power Sources. 15:109-118 |
ISSN: | 0378-7753 |
DOI: | 10.1016/0378-7753(85)80066-5 |
Popis: | Three primary cells (a, b, and c) and two secondary cell candidates (d and e) were examined in room temperature molten salt electrolytes containing either 1-methyl-3-ethylimidazolium chloride (MEICI) (a, b, d, and e), or 1-methyl-3-ethylimidazolium bromide (MEIBr) (c). (a) Al anode/AlCl 3 -MEICl ( N = 0.37)//FeCl 3 -MEICl ( N = 0.33)/W cathode (b) Al anode/AlCl 3 -MEICl ( N = 0.37)//WCl 6 -MEICl ( N = 0.33)/W cathode (c) Al anode/AlBr 3 -MEIBr ( N = 0.33)/Br 2 /RVC, Pt cathode (d) Zn anode/AlCl 3 -MEICl ( N = 0.33)//AlCl 3 -MEICl ( N = 0.60)/Al cathode (e) Cd anode/AlCl 3 -MEICl ( N = 0.33)//AlCl 3 -MEICl ( N = 0.60)/Al cathode where N is the mole fraction of aluminium halide in the melt. An IONACC® anion exchange membrane separated the anolyte and catholyte solutions in cells (a) and (b), while in cells (d) and (e) a NAFION® cation exchange membrane separated the anolyte and catholyte solutions. In cell (c) a phase boundary separated the anolyte and catholyte solutions, with reticulated vitreous carbon (RVC) acting as the anode current carrier. |
Databáze: | OpenAIRE |
Externí odkaz: |