Autor: |
Martin Gallegillo, Martina M. Joosten |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
Volume 6: Materials and Fabrication, Parts A and B. |
DOI: |
10.1115/pvp2012-78055 |
Popis: |
The presence of residual stresses can significantly affect the performance of manufactured products. The welding process is one of the most common causes of large tensile residual stresses, which may contribute to failure by brittle fracture or cause other forms of failure such as damage by corrosion and creep. Welding is a widely used method of fabrication and it can generate high levels of residual stress over significant proportions of the thickness of a component. In order to study the effect of material characterisation on computer based predictions of welding residual stresses, the presented work was carried out as part of the European Network on Neutron Techniques Standardisation for Structural Integrity (NeT). Within the NeT, a task group is investigating a three-pass Tungsten Inert Gas (TIG) weld benchmark. The three-pass specimen offers the possibility of examining the cyclic hardening and annealing behaviour of the weld metal and heat affected zone. A 3D model of the benchmark NeT problem was set up using ABAQUS v6.9.1 and validated against measurements. This paper presents the finite element work. Future papers from the NeT shall present experimental measurements. Different hardening models were considered in order to study their effect on the residual stresses. The different hardening models were isotropic hardening, linear and nonlinear kinematic hardening and combinations of these. Also the effect of annealing on the hardening behaviour is studied. Finally, the results of the simulations are compared to residual stress distributions as given in several standards. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|