Some limit properties of local time for random walk

Autor: Yan Yunliang, Wen Ji-wei
Rok vydání: 2006
Předmět:
Zdroj: Applied Mathematics-A Journal of Chinese Universities. 21:87-95
ISSN: 1993-0445
1005-1031
DOI: 10.1007/s11766-996-0027-y
Popis: Let X, X1, X2, … be i. i. d. random variables with E X 2+δ 0). Consider a one-dimensional random walk S={S n}n≥0, starting from S 0=0. Let μ*. A strong approximation of μ* by the local time for Wiener process is presented and the limsup-type and liminf-type laws of iterated logarithm of the maximum local time μ* are obtained. Furthermore, the precise asymptotics in the law of iterated logarithm of μ* is proved.
Databáze: OpenAIRE