Gauss’ lemma and valuation theory

Autor: Pham Ngoc Ánh, M.F. Siddoway
Rok vydání: 2016
Předmět:
Zdroj: Quaestiones Mathematicae. 39:603-609
ISSN: 1727-933X
1607-3606
DOI: 10.2989/16073606.2015.1119214
Popis: Gauss’ lemma is not only critically important in showing that polynomial rings over unique factorization domains retain unique factorization; it unifies valuation theory. It figures centrally in Krull’s classical construction of valued fields with pre-described value groups, and plays a crucial role in our new short proof of the Ohm-Jaffard-Kaplansky theorem on Bezout domains with given lattice-ordered abelian groups. Furthermore, Eisenstein’s criterion on the irreducibility of polynomials as well as Chao’s beautiful extension of Eisenstein’s criterion over arbitrary domains, in particular over Dedekind domains, are also obvious consequences of Gauss’ lemma. We conclude with a new result which provides a Gauss’ lemma for Hermite rings.
Databáze: OpenAIRE