Lipschitz maps and primitives for continuous functions in quasi-Banach spaces
Autor: | J. L. Ansorena, Fernando Albiac |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Nonlinear Analysis: Theory, Methods & Applications. 75:6108-6119 |
ISSN: | 0362-546X |
DOI: | 10.1016/j.na.2012.06.016 |
Popis: | We show that for a wide class of non-locally convex quasi-Banach spaces X that includes the spaces l p for 0 p 1 , there exists a continuous function f : [ 0 , 1 ] → X failing to have a primitive, thus solving a problem raised by M.M. Popov in 1994. We also construct the first known examples of functions in C ( 1 ) ( [ a , b ] , X ) that fail to be Lipschitz. |
Databáze: | OpenAIRE |
Externí odkaz: |