Lipschitz maps and primitives for continuous functions in quasi-Banach spaces

Autor: J. L. Ansorena, Fernando Albiac
Rok vydání: 2012
Předmět:
Zdroj: Nonlinear Analysis: Theory, Methods & Applications. 75:6108-6119
ISSN: 0362-546X
DOI: 10.1016/j.na.2012.06.016
Popis: We show that for a wide class of non-locally convex quasi-Banach spaces X that includes the spaces l p for 0 p 1 , there exists a continuous function f : [ 0 , 1 ] → X failing to have a primitive, thus solving a problem raised by M.M. Popov in 1994. We also construct the first known examples of functions in C ( 1 ) ( [ a , b ] , X ) that fail to be Lipschitz.
Databáze: OpenAIRE