Popis: |
This research proposes the Top-k Items Recommendation System which uses clustering techniques based on memory-based collaborative filtering technique. Currently, data sparsity and quantity of system are problems in memory-based collaborative filtering technique. We offer recommend or show some items set for user’s preference. In this research, we propose methods for recommended items set to user preference on data sparsity, movie lens datasets (1M) consisting of 671 users and 163,949 product items were used by determining the preference level between 1 and 5 and user satisfaction levels of all 98,903 items being build and test the models. Methods was divided into three parts included 1) Simple Agent Module 2) Neighbor Filtering and 3) Prediction and Recommend. Simple clustering was used to create a system to provide suggestions for sparsity data. Datasets obtained from clustering represented the sample agent of dataset to being create the recommendation system. Datasets were divided into two categories, 1) Traditional Data (TD) and 2) Statistic Data (SD), and each dataset clustered by k-means clustering. The experimental results demonstrated that the number of item types in the system were recommended in the TD and Euclidean (DIS). DIS was used to find the nearest value in TD for the item list recommendation to active users in the system with the a lot of number choice of recommendation system. |