Total Partial Domination in Graphs Under Some Binary Operations

Autor: Rowena T. Isla, Roselainie Dimasindil Macapodi
Rok vydání: 2019
Předmět:
Zdroj: European Journal of Pure and Applied Mathematics. 12:1643-1655
ISSN: 1307-5543
DOI: 10.29020/nybg.ejpam.v12i4.3554
Popis: Let G = (V (G), E(G)) be a simple graph and let α ∈ (0, 1]. A set S ⊆ V (G) isan α-partial dominating set in G if |N[S]| ≥ α |V (G)|. The smallest cardinality of an α-partialdominating set in G is called the α-partial domination number of G, denoted by ∂α(G). An α-partial dominating set S ⊆ V (G) is a total α-partial dominating set in G if every vertex in S isadjacent to some vertex in S. The total α-partial domination number of G, denoted by ∂T α(G), isthe smallest cardinality of a total α-partial dominating set in G. In this paper, we characterize thetotal partial dominating sets in the join, corona, lexicographic and Cartesian products of graphsand determine the exact values or sharp bounds of the corresponding total partial dominationnumber of these graphs.
Databáze: OpenAIRE