Brownian Motion Indexed by a Time Scale

Autor: David E. Grow, Suman Sanyal
Rok vydání: 2011
Předmět:
Zdroj: Stochastic Analysis and Applications. 29:457-472
ISSN: 1532-9356
0736-2994
DOI: 10.1080/07362994.2011.564441
Popis: In this article, we generalize Wiener's existence result for one-dimensional Brownian motion by constructing a suitable continuous stochastic process where the index set is a time scale. We construct a countable dense subset of a time scale and use it to prove a generalized version of the Kolmogorov–Centsov theorem. As a corollary, we obtain a local Holder-continuity result for the sample paths of generalized Brownian motion indexed by a time scale.
Databáze: OpenAIRE