Autor: |
Junfang Lu, Luke Ludwig, Bob Huntley, Axel Aulin, Andy Duncan |
Rok vydání: |
2018 |
Předmět: |
|
Zdroj: |
Volume 3: Operations, Monitoring, and Maintenance; Materials and Joining. |
Popis: |
The fracture mechanics based engineering critical assessment (ECA) method has been accepted as a fitness for service (FFS) approach to defining weld flaw acceptance criteria for pipeline girth welds. Mechanized gas metal arc welding (GMAW) processes are commonly used in cross country pipeline girth weld welding because of the advantages in good quality and high productivity. With the technical advancements of non-destructive testing (NDT) techniques, automated ultrasonic testing (AUT) has greatly improved flaw characterization, sizing and probability of detection during weld inspection. Alternative weld flaw acceptance criteria are permitted in pipeline construction code to assess the acceptability of mechanized girth welds using an ECA. The use of an ECA based weld flaw acceptance criteria can significantly reduce the construction cost. Mechanized girth weld acceptance criteria have been progressively transitioned from workmanship standards into using fitness for service based ECAs. To successfully deliver an ECA on a pipeline project, a multidisciplinary approach must be taken during the welding design and construction stages. Welding, NDT, mechanical testing and field control are all integral elements of pipeline construction. All these four elements have to be fully integrated in order to implement the ECA and achieve the overall integrity of a pipeline. The purpose of this paper is to discuss the importance of the integration of these four elements necessary for proper implementation of the ECA weld flaw acceptance criteria. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|