Cohen–Macaulayness of two classes of circulant graphs
Autor: | Hamid Reza Maimani, Do Trong Hoang, Mohammad Reza Pournaki, Amir Mousivand |
---|---|
Rok vydání: | 2020 |
Předmět: |
Algebra and Number Theory
Mathematics::Commutative Algebra Coprime integers 010102 general mathematics 0102 computer and information sciences 01 natural sciences Combinatorics Set (abstract data type) Integer 010201 computation theory & mathematics Discrete Mathematics and Combinatorics 0101 mathematics Circulant matrix Mathematics |
Zdroj: | Journal of Algebraic Combinatorics. 53:805-827 |
ISSN: | 1572-9192 0925-9899 |
Popis: | Let n be a positive integer and let $$S_n$$ be the set of all nonnegative integers less than n which are relatively prime to n. In this paper, we discuss structural properties of circulant graphs generated by the $$S_n$$ ’s and their complements. In particular, we characterize when these graphs are well-covered, Cohen–Macaulay, Buchsbaum or Gorenstein. |
Databáze: | OpenAIRE |
Externí odkaz: |