Vortex lattices and the Bogoliubov-de Gennes equations
Autor: | Ilias Chenn, Israel Michael Sigal |
---|---|
Rok vydání: | 2021 |
Předmět: |
Superconductivity
Basis (linear algebra) General Mathematics 010102 general mathematics BCS theory 16. Peace & justice 01 natural sciences Instability Vortex Magnetic field Condensed Matter::Superconductivity Lattice (order) 0103 physical sciences 010307 mathematical physics 0101 mathematics Ground state Mathematics Mathematical physics |
Zdroj: | Advances in Mathematics. 380:107546 |
ISSN: | 0001-8708 |
DOI: | 10.1016/j.aim.2020.107546 |
Popis: | We consider the Bogoliubov-de Gennes equations giving an equivalent formulation of the BCS theory of superconductivity. We are interested in static solutions with the magnetic field present. We carefully formulate the equations in the basis independent form, discuss their general features and isolate key physical classes of solutions (normal and vortex lattice states) which are the candidates for the ground state. We prove existence of the normal and vortex lattice states and stability of the normal states for large temperature or magnetic fields and their instability for small temperature and small magnetic fields. |
Databáze: | OpenAIRE |
Externí odkaz: |