Unique continuation principle for the Ostrovsky equation with negative dispersion

Autor: Pedro Isaza
Rok vydání: 2013
Předmět:
Zdroj: Journal of Differential Equations. 255:796-811
ISSN: 0022-0396
DOI: 10.1016/j.jde.2013.04.034
Popis: In this article we prove that if the difference of two solutions of the Ostrovsky equation with negative dispersion, ∂ t u + ∂ x 3 u − ∂ x u + u ∂ x u = 0 , has certain exponential decay for x > 0 at two different times, then both solutions are equal.
Databáze: OpenAIRE