consistent estimation of the density of residuals in random design regression models

Autor: Michael Kohler, Tina Felber, Adam Krzyżak, Luc Devroye
Rok vydání: 2012
Předmět:
Zdroj: Statistics & Probability Letters. 82:173-179
ISSN: 0167-7152
Popis: In this paper we study the problem of estimating the density of the error distribution in a random design regression model, where the error is assumed to be independent of the design variable. Our main result is that the L 1 error of the kernel density estimate applied to residuals of a consistent regression estimate converges with probability 1 to 0 regardless of the form of the true density. We demonstrate that this result is in general no longer true if the error distribution and the design variable are dependent.
Databáze: OpenAIRE