Autor: |
Michael Kohler, Tina Felber, Adam Krzyżak, Luc Devroye |
Rok vydání: |
2012 |
Předmět: |
|
Zdroj: |
Statistics & Probability Letters. 82:173-179 |
ISSN: |
0167-7152 |
Popis: |
In this paper we study the problem of estimating the density of the error distribution in a random design regression model, where the error is assumed to be independent of the design variable. Our main result is that the L 1 error of the kernel density estimate applied to residuals of a consistent regression estimate converges with probability 1 to 0 regardless of the form of the true density. We demonstrate that this result is in general no longer true if the error distribution and the design variable are dependent. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|