Comaximal graph of $C(X)$
Autor: | Mehdi Badie |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Commentationes Mathematicae Universitatis Carolinae. 57:353-364 |
ISSN: | 1213-7243 0010-2628 |
DOI: | 10.14712/1213-7243.2015.178 |
Popis: | In this article we study the comaximal graph $\Gamma'_{_2}C(X)$ of the ring $C(X)$. We have tried to associate the graph properties of $\Gamma'_{_2}C(X)$, the ring properties of $C(X)$ and the topological properties of $X$. Radius, girth, dominating number and clique number of the $\Gamma'_{_2}C(X)$ are investigated. We have shown that $2\leq \operatorname{Rad}\Gamma'_{_2}C(X) \leq 3$ and if $|X|> 2$ then $\mathrm{girth } \Gamma'_{_2}C(X)= 3$. We give some topological properties of $X$ equivalent to graph properties of $\Gamma'_{_2}C(X)$. Finally we have proved that $X$ is an almost $P$-space which does not have isolated points if and only if $C(X)$ is an almost regular ring which does not have any principal maximal ideals if and only if $\operatorname{Rad}\Gamma'_{_2}C(X)= 3$. |
Databáze: | OpenAIRE |
Externí odkaz: |