Exact solutions for stochastic Bernoulli–Euler beams under deterministic loading
Autor: | Oded Rabinovitch, Isaac Elishakoff, Nachman Malkiel |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Flexibility (anatomy) Mechanical Engineering Linear elasticity Mathematical analysis Fourier sine and cosine series Computational Mechanics 02 engineering and technology Bending 01 natural sciences 010305 fluids & plasmas Bernoulli's principle symbols.namesake 020303 mechanical engineering & transports medicine.anatomical_structure 0203 mechanical engineering 0103 physical sciences Solid mechanics Euler's formula symbols medicine Beam (structure) |
Zdroj: | Acta Mechanica. 232:2201-2224 |
ISSN: | 1619-6937 0001-5970 |
Popis: | This study deals with two general solutions for a simply supported linear elastic Bernoulli–Euler beam with a stochastic bending flexibility, subjected to a deterministic loading. Two model problems are considered. The first problem is associated with a trapezoidally distributed load, whereas the second problem treats a sinusoidally distributed load. The importance of the solution for the trapezoidal load lies in its practicality. The derivation of stochastic characteristics for random beams under a sinusoidal load is useful due to the expandability to generally distributed loads by a Fourier sine series expansion. Numerical results are reported for various cases illustrating the effect of stochasticity of the beam’s properties on its flexural response. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |